Distinguished Lectures

Logo Dipartimento di Informatica
Lunedì, 25 Gennaio, 2021

The Computer Science Department at Sapienza University of Rome is promoting a series of Distinguished Lectures held by renowned speakers on fundamental research topics in computer science. The goal of each lecture (approx. 45 minutes) is to explain why the theme is indeed fundamental, and to summarize the state of the art up to cutting edge research. 

Supported by MIUR under grant "Dipartimenti di eccellenza 2018-2022", of the Computer Science Department at Sapienza University.


Lecturer: Alessandro Chiesa

Title: From Zero Knowledge to Private Transactions

Location: Zoom meeting
Date: February 24, 2021.
Time: 17.00-18.00 (CET)

Alessandro Chiesa is a faculty member in computer science at UC Berkeley. He conducts research in complexity theory, cryptography, and security, with a focus on the theoretical foundations and practical implementations of cryptographic proofs that are short and easy to verify. He is a co-author of several zkSNARK libraries, and is a co-inventor of the Zerocash protocol. He has co-founded Zcash and StarkWare Industries. He received S.B. degrees in Computer Science and in Mathematics, and a Ph.D. in Computer Science, from MIT.
Abstract. The integrity of digital currencies such as Bitcoin rests on the fact that every payment is broadcast in plaintext. This fails to provide any meaningful privacy guarantees for users. In this talk I will explain how a beautiful cryptographic tool, zero knowledge proofs, can be used to design digital currencies that provide strong privacy guarantees for users. These ideas have been deployed in the wild, as part of the cryptocurrency Zcash and in several other settings.



Lecturer: Luciano Floridi

Title: AI, Digital Utopia, and “Asymptopia”

Location: Zoom meeting
Date: December 1, 2020.
Time: 11.00-12.00 (CET)

Luciano Floridi Professor of Philosophy and Ethics of Information at the University of Oxford, where he is Director of the OII Digital Ethics Lab. He is a world-renowned expert on digital ethics, the ethics of AI, the philosophy of information, and the philosophy of technology. He has published more than 300 works, translated into many languages. He is deeply engaged with policy initiatives on the socio-ethical value and implications of digital technologies and their applications, and collaborates closely on these topics with many governments and companies worldwide.
Abstract. AI promises to be one of the most transformative technologies of our age. In this lecture, I will argue that AI can actually support the development of a better future, both for humanity and for the planet. In the course of the lecture, I will outline the nature of utopian thinking, the relationship between it and digital technologies, and introduce what I shall call “asymptopia”, or asymptotic utopia, the possibility of a progressive improvement of our society steered by regulative ideals (Kant).

Lecturer: Luca Trevisan

Title: P versus NP

Location: Aula Seminari, Via Salaria 113, 3rd Floor.
Date: February 6, 2020.
Time: 11.30-12.30

Luca Trevisan is a professor of Computer Science at Bocconi University. Luca studied at the Sapienza University of Rome, he was a post-doc at MIT and at DIMACS, and he was on the faculty of Columbia University, U.C. Berkeley, and Stanford, before returning to Berkeley in 2014 and, at long last, moving back to Italy in 2019.

Luca's research is focused on computational complexity, on analysis of algorithms, and on problems at the intersection of pure mathematics and theoretical computer science.

Luca received the ACM STOC'97 Danny Lewin (best student paper) award, the 2000 Oberwolfach Prize, and the 2000 Sloan Fellowship. He was an invited speaker at the 2006 International Congress of Mathematicians. He is a recipient of a 2019 ERC Advanced Grant.

Abstract. The P versus NP problem asks whether every time we have an efficient algorithm to verify the validity of a solution for a computational problem we must also have an efficient algorithm to construct such a valid solution. It is one of the major open problems in mathematics and computer science and one of the six unresolved "Millenium Problems" with a million dollar prize on its solution.

We will trace the origin of this question, and its conceptual implications about the nature of mathematical proofs and the notions of expertise and creativity. We will see why certain proof strategies cannot possibly resolve this problem, and why fundamentally different ideas are needed to make progress. Finally, we will discuss "average-case analysis" extensions of the P versus NP problems, which are needed to reason about the security of cryptographic protocols and blockchains and about the complexity of problems arising in machine learning.

© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma